遗传算法

注:本文已发布超过一年,请注意您所使用工具的相关版本是否适用

实现示例-Golang

github

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
package GA

import (
"fmt"
"math"
"math/rand"
"time"
)

var (
groupSize int //种群大小
chromosomeSize int //染色体长度
selectRand float64 //轮盘选择概率
crossRand float64 //交叉概率
mutationRand float64 //变异概率
group []Person //种群
bestPerson Person //当前最好的个体
r *rand.Rand
)

//Person 个体
type Person struct {
chromosome []int //染色体
value float64 //适应值
}

//Init 初始化函数
//初始化设置种群大小、轮盘选择概率、交叉概率已经变异的概率
func Init(GroupSize, ChromosomeSize int, SelectRand, CrossRand, MutationRand float64) {
groupSize = GroupSize
crossRand = CrossRand
selectRand = SelectRand
mutationRand = MutationRand
chromosomeSize = ChromosomeSize
r = rand.New(rand.NewSource(time.Now().UnixNano()))
bestPerson.chromosome = make([]int, chromosomeSize)
}

//InitGroup 初始化种群
//根据种群大小随机产生一些个体填充
func InitGroup() {
group = make([]Person, groupSize)
for i := 0; i < groupSize; i++ {
group[i].chromosome = make([]int, chromosomeSize)
for j := 0; j < chromosomeSize; j++ {
if r.Float64() > selectRand {
group[i].chromosome[j] = 1
}
}
}
}

//Fitness 计算适应值
func Fitness(person Person) float64 {
x := decode(person)
return x + 10*math.Sin(5*x) + 7*math.Cos(4*x)
}

//解码
func decode(person Person) float64 {
var sum float64
//解码
for i := 0; i < chromosomeSize; i++ {
//二进制染色体转十进制值
if person.chromosome[i] == 1 {
sum = sum + math.Pow(2.0, float64(i))
}
}
return sum * 9 / (math.Pow(2.0, 14.0) - 1)
}

//Select 选择
func Select() {
newGroup := make([]Person, groupSize)
for i := 0; i < groupSize; i++ {
newGroup[i].chromosome = make([]int, chromosomeSize)
rnd := r.Float64()

A:
for j := 0; j < groupSize; j++ {
if group[j].value > rnd*bestPerson.value {
copy(newGroup[i].chromosome, group[j].chromosome)
break A
}
if j == groupSize-1 {
copy(newGroup[i].chromosome, bestPerson.chromosome)
}
}
}
group = newGroup
newGroup = nil
}

//Cross 交叉
func Cross() {
for i := 0; i < groupSize; i = i + 2 {
if r.Float64() < crossRand {
crossPosition := r.Intn(chromosomeSize - 1)
if crossPosition == 0 || crossPosition == 1 {
continue
}
//交叉
for j := crossPosition; j < chromosomeSize; j++ {
tmp := group[i].chromosome[j]
group[i].chromosome[j] = group[i+1].chromosome[j]
group[i+1].chromosome[j] = tmp
}
}
}
}

//Mutation 变异
func Mutation() {
for i := 0; i < groupSize; i++ {
if r.Float64() < mutationRand {
mutationPosition := r.Intn(chromosomeSize - 1)

//单点变异
if group[i].chromosome[mutationPosition] == 0 {
group[i].chromosome[mutationPosition] = 1
} else {
group[i].chromosome[mutationPosition] = 0
}
}
}
}

//GA 遗传算法
func GA() {
//初始化
Init(100, 14, 0.5, 0.6, 0.05)
//初始化种群
InitGroup()

//遗传循环
for i := 0; i < 200; i++ {

//计算适应值
for j := 0; j < groupSize; j++ {
group[j].value = Fitness(group[j])

//保存当前最好的个体
if group[j].value > bestPerson.value {
copy(bestPerson.chromosome, group[j].chromosome)
bestPerson.value = group[j].value
fmt.Println("第", i, "代最好个体:", bestPerson.value, " ", decode(bestPerson))
}
}

//选择
Select()

//交叉
Cross()

//变异
Mutation()
}
}

关注我获取更新

wechat
知乎
github

猜你喜欢


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议,转载请注明出处,禁止全文转载